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A B S T R A C T

In recent years, artificial neural networks were included in the prediction of deformations of structural elements,
such as pipes or tensile specimens. Following this method, classical mechanical calculations were replaced by a
set of matrix multiplications by means of artificial intelligence. This was also continued in finite element ap-
proaches, wherein constitutive equations were substituted by an artificial neural network (ANN). However, little
is known about predicting complex non-linear structural deformations with artificial intelligence. The aim of the
present study is to make ANN accessible to complicated structural deformations. Here, shock-wave loaded plates
are chosen, which lead to a boundary value problem taking geometrical and physical non-linearities into ac-
count. A wide range of strain-rates and highly dynamic deformations are covered in this type of deformation.
One ANN is proposed for the entire structural model and another ANN is developed for replacing viscoplastic
constitutive equations, integrated into a finite element code, leading to an intelligent finite element. All cal-
culated results are verified by experiments with a shock tube and short-time measurement techniques.

1. Introduction

Artificial neural networks have been applied in engineering pro-
blems as an alternative approach compared to classical methods based
on continuum mechanical modelling. Promising results were achieved
by investigating stress-strain curves of metal specimens under high-
temperature [1], design of steel structures [2], vibrations of structures
[3,4], or stability problems of structures [5]. Reliability studies of
structures were reported in [6] and influences of welding on material
properties are investigated in [7]. An ANN can lead to much lower
computational time and can replace the mechanical model completely.
It can be trained by experimental data, only, and needs therefore no
identification of material parameters. Consequently, a mathematical
model is generated by means of an algebraic system of equations. Fol-
lowing this approach, the ANN approximates to the trained data. The
learning procedure of the ANN is based on the examples, which are
provided by the user [8]. However, weaknesses of ANNs have been
reported in [9] due to the difficulties of interpreting parameters in
neural networks, e.g. the number of hidden layers or neurons. Also the
components of the synapse matrices of a trained ANN can hardly be
interpreted as it can be done with material parameters in a constitutive
law. In several studies, the problem of a so-called black box is described
[10,11]. Consequently, it is difficult to find reasons to explain dis-
correlations between predictions using ANN and experimental data.

Once, the ANN has been trained well with input and output data sets, it
can recalculate the provided data very accurately. However, predictions
beyond that data can lead to uncertain results, which is documented in
literature [12]. An additional approach using the advantages of ANN
together with well-established numerical methods is the development
of intelligent finite elements. These elements have been proposed in
literature, leading to a combination of classical finite elements with an
ANN and are used only for a part of the entire mechanical model.
Studies substituting the constitutive model by means of an ANN have
been published in [13]. A beam element, based on a neural network, is
proposed in [14] and leads to lower computational costs than a classical
approach. This benefit is even more pronounced since multiscale ap-
proaches are concerned [15]. In literature several neural network
constitutive models (NNCM) were discussed [16]. However, it was re-
ported that the choice of the provided training data is essential for a
reliable intelligent finite element [17].

The substitution of nonlinear structural and material models for
two-dimensional structures by ANNs is, to the knowledge of the au-
thors, not yet well known in literature. Structures, such as plates and
shells, are widely used in engineering, can be subjected to dynamic
loadings and can undergo geometrically non-linear deformations with
inelastic strains. Especially, the correct modelling of strain-rate de-
pendency of structural deformations is subject of current research
[18–20]. In the present study, metal plates are loaded impulsively by
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shock waves causing viscoplastic deformations and high inelastic strain
rates. The aim is to propose an ANN, which is able to predict these
highly non-linear structural deformations. The ANN is developed in two
ways. Firstly, a neural network is proposed, trained by experimental
data only and, afterwards, it is used to predict structural deformations
in additional experiments. Secondly, in order to overcome discorrela-
tions between measurements and calculations, an intelligent finite
element is proposed, wherein the constitutive equations are replaced by
an ANN. This neural network is trained with data about stresses, strains,
strainrates and hardening in a range, which is expected in the finite
element simulations. Following this strategy, we exploit the advantage
of ANNs to be very accurate since only trained data is used. The in-
telligent finite element is implemented in a code for a geometrically
non-linear first-order shear deformation shell theory. In this way, a
classical shell theory is combined with an ANN substituting a physically
nonlinear constitutive law and leading to low simulation times. By
means of the proposed method, ANNs shall be accessible to nonlinear
structural problems in engineering.

2. Experiment

The measured results of structural deformations are obtained by
experiments in a shock tube, see [21]. In Fig. 1, the used set-up of the
shock tube is shown, consisting of a high (HPC) and a low pressure
chamber (LPC), separated from each other by an aluminum membrane.
After an increase of the gas pressure in the HPC, the membrane is de-
stroyed, causing a shock wave, which propagates the shock tube to-
wards the aluminum plate specimen in the LPC. If the shock wave hits
the plate, then a high-pressure and high-density impulse is caused on
the specimen leading to viscoplastic deformations in time scales of
several microseconds.

The mid-point displacement of the circular specimen and the pres-
sure acting on the plate during the time are measured by means of
short-time measurement techniques. The experiments are carried out
with different thicknesses of membranes between the HPC and LPC and
with different gases in the HPC, such as nitrogen and helium. In this
way, different pressure peaks (pp) and pressure evolutions can be
caused on the specimen. The plate specimens are 2mm thick and ex-
hibit a diameter of 553mm. In Fig. 2, four experiments with mid-point
displacements (Dis.) of the plates and pressures (Pre.) acting on them
are presented. Three of them will be used to train the ANN and the
fourth one is taken as a reference for the validation of the ANN. The
measurements can be recorded down to 1 μs sample rate in order to
assure that enough experimental data is available to train the ANN. The
capacitive displacement sensor, developed in [21] and the piezoelectric
pressure sensors exhibit an inertia small enough to record fast signal
changes.

3. Artificial neural network for the entire structure

The ANN developed in this study is based on a feed forward net-
work, which is well established in literature [22]. The present

algorithm consists of three layers and is implemented in python. The
input layer includes three neurons, representing time, pressure, and
shock wave propagation velocity. The hidden layer is composed of eight
neurons and the output layer has one neuron denoting the mid-point
displacement of the plate specimen. In incremental approaches, as in
the finite element method, increments of state variables, e.g. strains and
displacements, are accumulated during the simulation. However, in the
present study, the ANN uses ordered pairs of values with the mentioned
input and output values, i.e. one pressure, one mid-point displacement,
and one propagation velocity can exist only at one instance of time. If
we ignored one of these neurons, then ambiguous solutions would be
possible. For this reason, the time is treated as a state variable in the
ANN as e.g. the mid-point displacement.

In Fig. 3, the architecture of the ANN is shown. In order to optimize
the least square error between calculated output and provided output
data, a gradient descent algorithm in form of the back propagation
method is applied. All values used in the ANN are normalised due to
better convergence [1,23]. In [24], it was described that it is necessary
to obtain numerical stability with homogeneous values. Here, this is
carried out for input and output values xi by

⎜ ⎟= + ⎛
⎝

−
−

⎞
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X x x
x x

0.1 0.8·i
i min

max min

leading to unified values Xi and with xmin and xmax as minimum and
maximum values of each input and output value, respectively. The
propagation function includes the weights wij, which exhibit random
values initially. They represent the weights of the connections between

Fig. 1. Principle of the shock tube.
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Fig. 2. Plate deflections under high speed pressure loadings with peak pressures
(pp) at the specimen and helium and nitrogen in the HPC.

Fig. 3. Artificial neural network for the entire structure.
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the neurons. During the training procedure the weights are determined
iteratively and the products of input signals together with the weights
are added in the propagation function

∑=
=

p X wj
i

n

i ij
1

with n as the number of inputs. Here, pj is the sum of all input values Xi
multiplied with the weights wij for the j-th neuron in the next layer. Due
to three layers in the ANN, two weight matrices will be obtained. The
system of matrices denote an algebraic set of equations. In order to
generate an output signal, an activation function is necessary, which is
monotonically increasing. The function Fj determines for one neuron j
the output signal. Here, from a variety of possible activation functions,
the sigmoid function is chosen:

=
+ −F

e
1

1
.j pj

For more detailed information about activation and propagation func-
tions with the considered weights, it is referred to textbooks such as
[25].

The function approximation by means of ANNs can be mathemati-
cally nonconstructive. Consequently, this effect leads to the problem,
that internal variables of the ANN, e.g the number of hidden layers,
have to be proposed by the user. Analogously, the same procedure is
applied to the determination of the number of weights and, if necessary,
biases between the layers [15,26]. These quantities have to be defined
by an iterative process, based on an optimum criterion. For this reason,
here, the smallest mean square error between the predicted values and
the experimentally obtained output values was used to identify the
number of neurons in the hidden layer. After training with experi-
mental data, the ANN can very precisely recalculate the measured
output values. However, it is documented in literature that even well-
trained ANNs can cause inaccurate results, if the input data differs from
the trained set of values [9,11,12]. In the present investigation in this
section, the accuracy of the extrapolated data is studied.

In Fig. 4, results of the trained and verified ANN in normalised
format are presented. In this diagram, three mid-point displacements of
the output neuron are connected with each other, denoting the amount
of data points used to train the ANN. For the trained model altogether
1200 input and output data points were used. A good correlation of the
trained ANN with the experimental data can be observed. However,
regarding the validation with a fourth experiment, the correlation of
the predicted output is not as good as in the trained case. Similar results
are obtained, if trained and validated output values are exchanged.
However, the mid-point deflection, which was used in Fig. 4 for vali-
dation, is shown in Fig. 5 for another calculation with physical values
after training.

Here, only several training points are provided for the ANN and the
prediction of the mid-point deflections is very close to the measure-
ment. Consequently, the ANN can recalculate the given data sets during
the training, as shown in Fig. 4, very accurately. Weaknesses in pre-
dictions occur, if the ANN has to inter- or extrapolate with new input
data. For this reason, in the next sections, an intelligent finite element is
proposed, which uses only data of a trained ANN.

4. Non-linear structural and material model

In [21], a geometrically and physically nonlinear shell model,
taking first-order shear deformations into account, was used. Due to the
combination of a structural model with viscoplastic constitutive equa-
tions, developed in [27], it was possible to account for strain-rate de-
pendency. In previous works, an extensive effort was made to identify
material parameters. In the present work, this step is not necessary
anymore, because the following constitutive relations are replaced by
an intelligent element:
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Here, εij
p, σij, Xij, R, k, p, σv denote plastic strain tensor, stress tensor,

backstress tensor, isotropic hardening, yield limit, equivalent plastic
strain, overstress, and a s b b n K, , , , ,1 2 are material parameters. The
deviatoric part of a tensor is denoted by ′() , ()̇ indicates the material
time derivative. All plate and tensile specimens are cut out of thin metal
sheet plates. For this reason, cyclic material tests to separate kinematic
and isotropic hardening from each other are not possible. Consequently,
pure kinematic hardening was assumed. Based on this strongly non-
linear model, finite element simulations were carried out in previous
works, which are used in this study as an additional validation result
together with the measurements. Due to the structural assumption of a
constant shell thickness during deformations, the stress, strain, and
backstress tensors include only five components, two in the direction of
the midsurface and three shear components.

5. Intelligent finite element

In the intelligent finite element, the viscoplastic material law, used
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Fig. 4. Normalised mid-point displacements after training and validation.
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in the Gaussian quadrature points, is substituted by a trained ANN. The
data to train the model is obtained by numerical simulations with the
finite element code, described in the cited previous studies. A set of
constitutive data is generated with five stress, backstress, and plastic
strain tensor components for the input layer. The output layer consists
of five plastic strainrate and backstressrate tensor components. The
neural network, shown in Fig. 6 with three layers, 15 neurons in the
input layer, seven neurons in the hidden layer and ten neurons in the
output layer, is proposed.

This ANN is trained with 1500 input and output data points in order
to obtain two synapse matrices including the weights, see Eq. (3). From
previous studies, it was ensured that the state variables, occurring in the
simulations with an ANN, will be in the range of the trained data. E.g.
normal stresses are in-between 1.5 N/mm2 and − 1 N/mm2. All state
variables are normalised as presented in Eq. (3).

For the training of the ANN the same phyton code is used as de-
scribed in Section 3, leading to the determination of the two synapse
matrices. Afterwards, the viscoplastic constitutive equations in the fi-
nite element code are replaced by the ANN. During the calculations, all
input variables were normalised and the output variables were de-
termined by the ANN integrated into the finite element code. The
normalised output variables were transformed back to physical values.
In this way, the simulations are using only trained ANN data. However,
small interpolations between trained data points are possible. The ob-
tained simulation results are shown in Fig. 7.

It should be pronounced, that due to the proposed intelligent finite
element, the relation between state variables (e.g. between stresses and
strains) is already known before the finite element simulation starts and
has not to be determined by iterative calculations of inelastic evolution
processes during the simulations. This establishes the possibility to re-
duce computational costs and time. For this reason, the elastic material
law is not replaced in the numerical simulations, because, in the present
study, there is not any advantage regarding computational effort of an
ANN compared to an elastic material law. The dependency in-between
state variables in the elastic constitutive law is given by a matrix
multiplication, equivalently to the proposed ANN for the viscoplastic
model. The predicted curve using the intelligent finite element is pre-
sented versus the classical finite element simulation results and the
measured mid-point deflections. As it can be observed, the correlation
of the curve by means of the intelligent element, belonging to a peak
pressure =pp 3.5 bar is much closer to the measurement as in Fig. 4.
However, differences to the classical finite element method can be

found in Fig. 7. The analogous result is visible for a plate deflection
with a peak pressure of =pp 7 bar. This could be explained by the in-
terpolation of the ANN between given points in the trained data set.
Due to the fact that the constitutive law is replaced by an ANN, the
calculated result by means of a neural network can only tend towards
the finite element result. However, the ANN simulation cannot predict
the measurement better than the FEM result. The present example with
the peak pressure =pp 7 bar can be improved by a higher density of
input and output data for training the intelligent element. The more
data points provided, the better the approximation of the ANN solution
towards the FEM result. An interesting next step in developing in-
telligent finite elements would be to replace matrices in the system of
the equations of motion in the finite element algorithm. These matrices,
e.g. sum of internal forces, keep not only information about the con-
stitutive law, but also relations of the structural behaviour inside. In
this way, generalised force and displacement dependencies could be
expressed by an ANN and not only stress strain relations.

The advantage of the intelligent element, used in the present study,
is, that iteration processes with the constitutive law, as they are ne-
cessary in conventional finite element simulations, can be omitted in
the ANN. Here, stresses, strains, strainrates, backstresses, and back-
stressrates are explicitly included in the training data. Therefore, the
simulations by means of ANN led to the half of the computing time
compared to the classical finite element method.

In Fig. 8 the stress evolutions in two points, where the maximum
radial stresses in the plate occur, are shown for =pp 7 bar. In the plate
centre at the bottom and at the boundary in the top of the plate, the
stresses are plotted in the period when the structure is subjected to the
shock-wave until the plate reaches its first amplitude.

Fig. 6. Artificial neural network for a viscoplastic material model.
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In the cited previous studies, it was reported, that this time is es-
sential for the shape forming of the structure due to the wave propa-
gation within this period. The bottom of the plate is inside the shock
tube, that means, it is subjected to the pressure wave. Even the ap-
pearance of stress waves is well predicted by the intelligent element, as
it can be observed by the oscillating stress evolution in the plate centre.
Due to the subjection of the plane pressure wave on the entire surface of
the plate specimen, the wave propagation starts at the boundary,
leading to oscillating stresses in the plate centre. The stress values are
slightly different between the FEM and ANN method, however, e.g. the
phase shift between two amplitudes of the FEM and ANN results is
rather small with around one tenth of a millisecond. These differences
in the stress distributions could be one indicator for the differences in
Fig. 7, because the trained ANN has to interpolate, if the values for state
variables do not occur exactly in the training data sets.

6. Discussion and conclusions

Two methods of developing ANNs have been proposed in the pre-
sent study. In the first approach, experimental data was used only for
the entire structural response. It was possible to train the neural net-
work with these values, but the prediction of additional deformations
outside of the trained data deviates from the measured mid-point de-
flections of the plate specimens. Consequently, the advantage of an
ANN, to be very reliable since trained data is recalculated, was used to
propose an intelligent finite element for viscoplastic material beha-
viour. However, it must be ensured that the occurring state variables in
the intelligent finite element simulations are inside the provided set of
constitutive training data. Following this method, simulation results
being much more precise than in the first approach are obtained, but
with considerably less computational effort than in classical finite ele-
ment simulations. However, one intermediate step is necessary before
the intelligent element is complete. The data set to train the ANN and to
determine the synapse matrices have to be obtained numerically. In
summary, the proposed method demonstrates the possibility to develop
an ANN within an intelligent finite element for non-linear problems in
structural mechanics. This method can be very efficient concerning the
reliability of numerical predictions and can lead to a significant re-
duction of simulation time.
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